
2026/01/28 23:03 1/6 자바 데이터 타입, 변수 그리고 배열

문제를 잘 정의하는 것은 문제를 절반 해결한 것이다. - 2023.12 - http://125.132.25.164/dokuwiki/

자바 데이터 타입, 변수 그리고 배열

자바의 프리미티브 타입, 변수 그리고 배열을 사용하는 방법을 익힙니다.

프리미티브 타입 종류와 값의 범위 그리고 기본 값

우리가 주로 사용하는 값의 종류는 크게 문자와 숫자로 나눌 수 있으며 여기서 숫자는 다시 정수
와 실수로 나뉜다.

기본형은 모두 8가지의 타입(자료형)이 있으며, 크게 논리형, 문자형, 정수형, 실수형으로 구분된
다.

타입 종류

정수형은 가장 많이 사용되기에 타입이 4가지나 제공된다.

각 타입별로 범위가 다르기에 범위에 맞는 값을 사용하면 된다.

http://125.132.25.164/dokuwiki/lib/exe/detail.php?id=wiki%3Ajava%3Ajava-lecture%3A2week&media=wiki:java:java-lecture:2week:1.png
http://125.132.25.164/dokuwiki/lib/exe/detail.php?id=wiki%3Ajava%3Ajava-lecture%3A2week&media=wiki:java:java-lecture:2week:2.png

Last update:
2022/03/10 19:52 wiki:java:java-lecture:2week http://125.132.25.164/dokuwiki/doku.php?id=wiki:java:java-lecture:2week&rev=1610497459

http://125.132.25.164/dokuwiki/ Printed on 2026/01/28 23:03

타입 범위

boolean은 true와 false 두 값만 표현하면 되기에 1바이트면 충분하다.

기본 값 : false
char는 자바에서 유니코드(2 byte문자 체계)를 사용하기에 2byte

기본 값 : \u0000
byte는 크기가 1byte이므로 byte.

기본 값 : 0
int(4 byte)를 기준으로 짧게는 (2 byte) 길게는 (8 byte)를 취사선택한다.

기본 값 : 0
float은 실수값을 부동소수점(floating-point)방식으로 저장하기 때문에 float

기본 값 : 0.0F
double은 float보다 두 배의 크기(8byte)를 갖기 때문에 double

기본 값 : 0.0

실수형의 정밀도

실수형은 정수형과 저장 방식이 다르기에 같은 크기라도 훨씬 큰 값을 표현할 수는 있지만, 오차가

발생할 수 있다. 그래서 정밀도(precision)가 중요한데, 정밀도가 높을수록 오차의 범위가 줄어든
다.
위 표를 보면 float의 정밀도는 7자리로 10진수로 7자리의 수를 오차없이 저장할 수 있다는 의

미다. 그렇기에 사용할 변수의 값의 범위가 7자리를 넘는다면 정밀도를 고려해 double 타입을 사
용해야 한다.

http://125.132.25.164/dokuwiki/lib/exe/detail.php?id=wiki%3Ajava%3Ajava-lecture%3A2week&media=wiki:java:java-lecture:2week:3.png
http://125.132.25.164/dokuwiki/lib/exe/detail.php?id=wiki%3Ajava%3Ajava-lecture%3A2week&media=wiki:java:java-lecture:2week:4.png

2026/01/28 23:03 3/6 자바 데이터 타입, 변수 그리고 배열

문제를 잘 정의하는 것은 문제를 절반 해결한 것이다. - 2023.12 - http://125.132.25.164/dokuwiki/

프리미티브 타입과 레퍼런스 타입

자료형은 크게 '기본형(Primitive Type)' 과 참조형(Reference Type)으로 나눌 수 있다.

기본형(Primitive Type) : 논리형(boolean), 문자형(char), 정수형(byte, short, int, long), 실수

형(float, double) 계산을 위한 실제 값을 저장한다.

참조형(reference type) : 객체의 주소를 저장한다. 기본적으로 Java.lang.Object를 상속받을
경우 참조형이 된다. 즉, 기본형을 제외하고는 참조형이라 생각해도 된다.

좀 더 얘기하자면 기본형은 메모리영역의 스택영역에 실제 값들이 저장된다면, 참조형은 실제 인스턴스
는 힙영역에 생성되있고, 그 영역의 주소를 스택영역에서 저장하고 있다고 보면 된다.

리터럴

� 그 자체로 값을 의미하는 것

리터럴은 데이터 그 자체를 의미한다.

아래 그림에서 2020이 리터럴이다.

즉, 2020, 123, 3.14, “ABC” 와 같은 값들을 리터럴이라고 하는데 본래 이러한 값들은 상수라 불러
야 하지만 프로그래밍에서는 상수를 '값을 한 번 저장하면 변경할 수 없는 저장공간'으로 정의했기
때문에 이와 구분하기 위해서 리터럴이라는 용어를 사용한다.

그러니 리터럴은 기존에 알고있던 상수의 다른 이름이라고 볼 수 있다.

� 인스턴스는 리터럴이 될 수 있을까?

인스턴스안의 값의 불변성(Imutable) 이 보장된다면 객체 리터럴이 될 수 있다.(불변 클래

스(imutable class))

하지만 이렇게 불변성을 보장하도록 설계된 클래스를 제외하고 보통의 인스턴스는 동적으로 사용
되고 내용이 변할 수 있기 때문에 객체 리터럴이 될 수 없다.

�Ex: Java.lang.String 이나 java.awt.Color 같은 클래스는 내용이 변해야 하는 상황이면
새로운 객체를 만들어 내용의 불변성이 보장되기에 객체 리터럴이라 부른다.

변수 선언 및 초기화하는 방법

http://125.132.25.164/dokuwiki/lib/exe/detail.php?id=wiki%3Ajava%3Ajava-lecture%3A2week&media=wiki:java:java-lecture:2week:5.png

Last update:
2022/03/10 19:52 wiki:java:java-lecture:2week http://125.132.25.164/dokuwiki/doku.php?id=wiki:java:java-lecture:2week&rev=1610497459

http://125.132.25.164/dokuwiki/ Printed on 2026/01/28 23:03

변수 선언

변수를 사용하기위해서는 우선 변수를 선언해야 하며 아래 그림과 같이 선언합니다.

변수 타입 : 변수에 저장될 값이 어떤 타입(type)인지 지정하는 것.

변수 이름 : 변수에 붙힌 이름. 변수가 값을 저장할 수 있는 메모리 공간을 의미하므로 변수 이름은
이 메모리 공간에 이름을 붙혀주는 것.

이렇게 변수를 선언하면, 메모리의 빈 공간에 '변수타입'에 알맞은 크기의 저장공간이 확보되고, 변수 이
름을 붙혀서 이 이름을 통해 해당 저장공간을 사용할 수 있게 된다.

변수 초기화

� 변수를 사용하기 전 처음으로 값을 저장하는 것

변수를 선언하면 메모리에 변수의 저장공간이 확보되어있지만, 여러 프로그램에 의해 공유되기 때문에
이 공간안에 어떠한 값이 저장되어있을지는 알 수 없다.

그렇기에 초기화(initialization)를 해줘야 한다.

변수에 값을 저장할 때는 대입 연산자 =을 사용한다. 위 그림을 보면 year라는 int 변수타입과

year라는 변수 이름을 가진 변수에게 2020이라는 값을 대입한다.

즉, 대입연산자의 우측의 있는 값을 좌측에 있는 변수에 저장한다.

변수의 종류에 따라 변수의 초기화를 생략할 수 있는 경우도 있지만, 변수는 사용되기 전에 적절한
값으로 초기화 하는 것이 좋다.

http://125.132.25.164/dokuwiki/lib/exe/detail.php?id=wiki%3Ajava%3Ajava-lecture%3A2week&media=wiki:java:java-lecture:2week:6.png
http://125.132.25.164/dokuwiki/lib/exe/detail.php?id=wiki%3Ajava%3Ajava-lecture%3A2week&media=wiki:java:java-lecture:2week:7.png
http://125.132.25.164/dokuwiki/lib/exe/detail.php?id=wiki%3Ajava%3Ajava-lecture%3A2week&media=wiki:java:java-lecture:2week:8.png

2026/01/28 23:03 5/6 자바 데이터 타입, 변수 그리고 배열

문제를 잘 정의하는 것은 문제를 절반 해결한 것이다. - 2023.12 - http://125.132.25.164/dokuwiki/

그밖의 초기화의 종류

지역변수는 변수의 초기화로 충분하지만, 멤버변수의 초기화는 몇가지 방법이 더 있다.

1. 명시적 초기화(explicit initialization)

: 변수 선언과 동시에 초기화 하는 것을 명시적 초기화라 하는데, 위에서 소개한 변수의 초기화와 동일
하며, 클래스 및 지역변수 어디서든 사용가능하며 여러 초기화 방법중 최우선적으로 고려한다.

2. 초기화 블럭(initialization block)

: 초기화 블럭은 클래스 초기화 블럭과 인스턴스 초기화 블럭으로 나뉜다.

class ExplicitInitialization {

static {
 /*클래스 초기화 블럭 */
}
{
 /*인스턴스 초기화 블럭*/
}

}

클래스 초기화 블럭: 클래스변수의 복잡한 초기화에 사용. 블럭내에서는 로직도 추가할 수 있기 때
문에 명시적 초기화만으로 부족할 때 사용한다.
인스턴스 초기화 블럭: 인스턴스 변수의 복잡한 초기화에 사용. 모든 생성자가 공통으로 수행해야
하는 로직이 있을 때 사용한다.

3. 생성자(constructor) :생성자는 말 그대로 인스턴스 생성시에 생성자 함수 안에서 명시적 초기화가 이
뤄진다.

변수의 스코프와 라이프타임

타입 변환, 캐스팅 그리고 타입 프로모션

1차 및 2차 배열 선언하기

타입 추론, var

Ref

https://catsbi.oopy.io/6541026f-1e19-4117-8fef-aea145e4fc1b

https://catsbi.oopy.io/6541026f-1e19-4117-8fef-aea145e4fc1b

Last update:
2022/03/10 19:52 wiki:java:java-lecture:2week http://125.132.25.164/dokuwiki/doku.php?id=wiki:java:java-lecture:2week&rev=1610497459

http://125.132.25.164/dokuwiki/ Printed on 2026/01/28 23:03

https://github.com/whiteship/live-study/issues/2

와프

From:
http://125.132.25.164/dokuwiki/ - 문제를 잘 정의하는 것은 문제를 절반 해결한 것이다. - 2023.12

Permanent link:
http://125.132.25.164/dokuwiki/doku.php?id=wiki:java:java-lecture:2week&rev=1610497459

Last update: 2022/03/10 19:52

https://github.com/whiteship/live-study/issues/2
http://125.132.25.164/dokuwiki/doku.php?id=tag:%EC%99%80%ED%94%84&do=showtag&tag=%EC%99%80%ED%94%84
http://125.132.25.164/dokuwiki/
http://125.132.25.164/dokuwiki/doku.php?id=wiki:java:java-lecture:2week&rev=1610497459

	자바 데이터 타입, 변수 그리고 배열
	프리미티브 타입 종류와 값의 범위 그리고 기본 값
	타입 종류
	타입 범위
	실수형의 정밀도

	프리미티브 타입과 레퍼런스 타입
	리터럴
	변수 선언 및 초기화하는 방법
	변수 선언
	변수 초기화
	그밖의 초기화의 종류
	1. 명시적 초기화(explicit initialization)
	2. 초기화 블럭(initialization block)

	변수의 스코프와 라이프타임
	타입 변환, 캐스팅 그리고 타입 프로모션
	1차 및 2차 배열 선언하기
	타입 추론, var
	Ref

